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Abstract—This paper showcases recent findings within
neuroscience literature and implicates biological utility to
the transformer model. A basic overview of the model’s
main components and self-attention heads are provided.
One parameter and two components are proposed within
the architecture that follow attention and memory research
done in human studies. These are Memory Decay, Expo-
sure Count, and Context Look-Up, respectively. This is
an effort to improve the structure of the transformer as
well as discuss components that could be necessary to its
application in Artificial General Intelligence (AGI).

I. INTRODUCTION

A transformer is a type of deep neural network that in-
corporates abundant use of self-attention heads and feed
forward networks to process and forecast a sequential
style of input and output. This model was first proposed
in December of 2017 from researchers with the Google
Brain team. The original model and corresponding re-
search paper [1] has become the playbook for designing
any modern natural language processor (NLP), as well
as specific cases using computer vision (CV). This paper
assumes general knowledge of deep neural networks and
familiarity with attention-heads used in neural-machine
translation.

Among relevant research, there have not been neu-
rological ties to the architecture of the model. It is
the hypothesis of this paper that comparing biological
hardware systems and processes to the transformer self-
attention mechanism could lead to findings that improve
the specific and general performance of the model.

It appears to be a coincidence that the best performing
model shares similarities with our main cognitive func-
tion. As a matter of experience, what you pay attention
to is who you are. Humans shine this attention spotlight
on different aspects of sensory input, whether voluntary

or involuntary. It is how we interact with the world and
how we decide on what is important.

Attention is not just a singular act, but a multifaceted
hierarchy within neuronal processing.

The effectiveness of attention (relies) on much
more than whether the spotlight is focused
or not. It is also critical when, where and
how long the spotlight is wielded. These three
aspects of attention that build on its selectivity
are known as expectation, directionality, and
sustainability [2].

The self-attention mechanism within the transformer
model has been aptly named. The transformer decides
what parts of the input sequence to attend to, with an
effectively infinite time-horizon. The goal of this paper
is to review the competencies of human neurological
function with respect to top-down attention modulation
and provide ideas for integrating those competencies
within the transformer model.

II. BRIEF OVERVIEW OF TRANSFORMER

ARCHITECTURE

For a transformer based system, it can be better to
think about the inputs and outputs in terms of tensors
with varying dimensionality. (A reminder of tensor rank:
zero (0) is a scalar, one (1) is a vector, two (2) is a
matrix, three (3) is a cube, etc...) These tensors, which
traditionally represent word tokens (vectors), are passed
through layers in the network.

In the general model (Fig. 1 - left), the left box
represents the encoder and the right box represents the
decoder. In the original paper [1], the researchers stacked
the encoder and decoder layers six (6) times.

Because there is no recurrent structure, there needs
to be a way for the model to see location information
for each token. Therefore, a positional tensor must be



Fig. 1. The Original Transformer - Expanded View
[3]

added to each word tensor before it is passed into the first
layer. This positional tenor is a relative position based
on a sin and cosine function. For even position tensors a
sine wave is added, and odd positions use a cosine wave.
The position of the tensor i, location dimension pos, and
model dimension dmodel are passed to these functions.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

In the multi-headed self-attention layer, these tensors
are split into the Query (Q), Key (K), and Value (V)
inputs and are multiplied against each other in various
orders and combinations. Each combination outputs a
new tensor which can be thought of as the attention
score. (Fig. 2)

The attention score matrix that results from the multi-
plication can be thought of as a self-referential attention
process. In other words, the input is being multiplied
against itself and creating the attention matrix. This
happens in multiple parallel layers with variations in
initialization weights in an attempt to find different
interpretations of the same input. In the original paper
[1], eight (8) Scaled Dot-Product attention heads were
used per encoding layer. (Fig. 1 - middle)

Fig. 2. Dot-Product Self-Attention
[4]

On the decoder side (Fig. 1 - left), each layer has
two attention heads that receive different input. The first
decoder layer receives the target as input to its masked
attention head. This does exactly the same as a regular
attention head except tensors beyond the current iteration
are hidden.

We also modify the self-attention sub-layer in
the decoder stack to prevent positions from at-
tending to subsequent positions. This masking,
combined with fact that the output embeddings
are offset by one position, ensures that the
predictions for position i can depend only on



the known outputs at positions less than i [1].
The second attention head of the decoder layer re-

ceives the encoder output as its Key (K) and Value (V)
inputs, with the masked attention head output taking the
place of the Query (Q). All subsequent decoder layers
receive the encoder output as well as input from the
decoder before it. (Fig. 3)

Fig. 3. Encoder-Decoder Relationship
[5]

There are other feed-forward and normalization layers
within each encoder and decoder layer, but for the
purposes of this paper they are not going to be examined.
When the model is being used for inference instead of
training, the thought is that the encoder and decoder
weights are sufficiently trained to be able to compute an
correct interpretation of the target without having seen
it.

III. ATTENTION AND MEMORY IN NEUROSCIENCE

The source of our cognitive functioning, our brain and
subsystems, must distill the most important information.
When this process is done actively, this is considered
top-down modulation.

Top-down modulatory functions dynamically
modulate neuronal excitability both in the pres-
ence of stimuli, i.e., during selective encoding
of items to be remembered and selective re-
trieval of a memorandum, as well as in the
absence of external stimuli, i.e., in expectation
of items to encode or ignore and during main-
tenance of items during a temporal delay [7].

While deciding on what to focus on, we are constantly
accessing and retrieving memory states that we encoded
in distant brain regions.

This is in contrast to bottom-up attention which gen-
erally comes from environmental stimuli that is pas-
sively observed. Under normal waking consciousness,

we discount less-than-novel stimulation in order to direct
our goals via top-down processes. If we encounter a
new stimulus, our bottom-up attention throws a novelty
response and top-down attention takes over. This is why
humans can pay attention to a podcast and drive a car at
the same time. However, if there is a significant bottom-
up event, our top-down attention is pulled to the new
stimulus and we lose focus on the other task. [8]

(Patterns of activity) provide bias signals to
other brain structures whose net effect is
to guide the flow of activity along neural
pathways that establish the proper mappings
between inputs, internal states, and outputs
needed to perform a given task.” Thus, the
cognitive control needed to enact our goals is
manifested by higher-order representations in
the prefrontal cortex that result in the top-down
modulation of neural activity (...) [2].

It’s clear that there is a hierarchy of neuronal structures
that play off each other for specific tasks. If a task uses
physical movement, that region is activated. If a task
requires heavy use of language, that region is activated.
We are constantly accessing different regions via control
from the prefrontal cortex.

Findings within the last 10 years also show the utility
of ignoring stimuli. In research done by the Gazzaley
Lab at the University of California, San Francisco, they
found the ability to ignore information as important as
the ability to decide on what is useful.

This experiment revealed that focus was not
the primary determinant of high-level work-
ing memory performance; rather, memory de-
pended more on effectively ignoring distrac-
tions [2].

Human creativity also relies on these distant connec-
tions across the brain.

The recurrent theme that epitomizes the cre-
ative process is not generating something
brand-new out of the blue. Rather, a cre-
ative spark occurs when unexpected associa-
tions among existing elements are suddenly
forged—a sort of cognitive alchemy [9].

As different neural components are accessed, the pre-
frontal cortex can find stability among the noise and see
associations between distant ideas; and memory holds
a large portion of the structure together. Memory and
its various types also play a key role in the foundation
of cognitive processes. Intellectual work would not be
possible without a memory frame to reference.



Fig. 4. Token Relationship Map
[6]

The output of the encoder layer acts as a mem-
ory structure. The attention head weights are complex
enough in dimension to be fine tuned and attend to
specific tokens. Is it possible to do better by using our
findings of neuronal attention processes?

IV. WHERE CAN THINGS BE IMPROVED?

Some of humanity’s greatest accomplishments have
come from impressions we have found in nature. The
neural network structure is a (basic) attempt to mimic our
biological neuronal processing. The transformer model is
a breakthrough in computational processes and reflecting
on our own biology is a productive step as we continue
to develop our intelligent machines.

While impressive, these transformer models are far
from general intelligence agents. They are able to dis-
tinguish between the importance of specific words, but
not due to the word’s actual meaning. At their core,
these models are sophisticated language mimics. Brief
examples are provided in Fig. 5 and Fig. 6 using the
OpenAI playground where you can interact with a vari-
ety of transformer models.

In Fig. 5, the use of past tense could have influenced
the model to pick a previous President’s name, even if
the question does not follow coherent logic. A more
intelligent response would have been to clarify the initial
question, or to comment that it’s impossible to know who
the president will be in the year 2100.

Because the models lack context and tangible word
understanding, they can be fooled with incoherent logic
even when the sentence is grammatically correct. The

sentence could look similar to possible text it has seen
before, but changing a single word can change the
interpretation.

In Fig. 6, the model is sure the answer is a book-
mark, rather than responding that turning a page of the
“banana” I’m reading is not possible. If the word was
switched to “book”, it would be sound logic. Because
there is no context implied within the actual words, the
model follows a standard structure for the other 18 words
in the sentence.

Using attention and memory research from neuro-
science concepts outlined above, I have outlined three
potential factors that seek to improve the transformer
model.

1) Memory Decay
2) Exposure Count
3) Context Look-Up

A. Memory Decay

In research done by Dr. Scott Small at the University
of Columbia, Alzheimer’s disease has provided informa-
tion on how cognitive flexibility works. In all animals,
key molecules within cortical memory structures are ex-
tremely similar. The ability to forget has been precluded
within intellectual processing among biological life.

By testing different computer algorithms, com-
puter scientists have learned that adding more
memory—the equivalent of adding more den-
dritic spines—will not improve pattern recog-
nition of faces or of anything else. Instead,
the more effective way to artificially create



Fig. 5. OpenAI Playground with text-ada-001
https://beta.openai.com/playground?model=text-ada-001

Fig. 6. OpenAI Playground with text-davinci-002
https://beta.openai.com/playground?model=text-davinci-002

human computational flexibility is to force the
algorithm to have more forgetting [9].

Currently, the transformer model can operate its at-
tention method on the entire sequence of input. Due to
memory and processing constraints, most models have a
maximum input length of around 2000 tokens. Allowing
for a parameter that discounts tokens located further
apart could potentially increase the model’s cognitive
flexibility.

This parameter should be tuned dependent on different
goals. If the attention matrix shows a token with a high
attention score located at the beginning of a long input,
this parameter could be used to slightly devalue that
score. This would prevent the model from getting stuck

on any specific long-distanced token.

B. Exposure Count

In regards to human attention, repeated exposure to
a stimulus is the basis of familiarity. There are other
subtle findings such as the Mere-exposure Effect, also
known as the Familiarity Principle that distinguish our
interactions and preferences for stimuli we have seen
before. [10] Giving the model the ability to keep track
of similar tokens could provide a foundation for further
improvements.

This could be an additional component next to the
encoder and decoder layers that updates with training.
This could count tokens and then later be referenced
depending on the desired context. Cosine similarity could



be used to measure potentially similar tensors within the
initial attention-head inputs. As the training corpus is
iterated through, an exposure counter could be useful for
the developers as well. After training, semantic analysis
could even be done based on the count of specific words.
This could give additional insight to test if the model is
biased towards using specific tokens.

C. Context Look-Up

In a similar way to keeping track of exposure to
tokens, tokens with large attention values could be
marked as valuable. This follows neuroscience findings
when semantic information is encoded with emotional
information.

If factual information is processed and coded
by the central hubs in the cortex, the amygdala
can be considered a subcortical central hub that
processes and codes emotional information [9].

The attention head helps the model decide what to look
at, but it does not help the model with the tangible
meaning. Researchers assume that with enough training
data, the transformed tokens inherit meaning from their
location within the text; and this is likely true to an
extent. It is a brute force way to catch meaningful
information.

If there was a second component that encoded ex-
plicit information about known high-attention tokens,
the model’s overall performance could improve. Humans
have developed additional methods for storing attention
and emotion states for future decision making.

(Choose) words that are precise and specific
when describing what we feel. Accurately
distinguishing among interoceptive sensations
is associated with making sounder decisions,
acting less impulsively, and planning ahead
more successfully—perhaps because it gives us
a clearer sense of what we need and what we
want [11].

Being highly descriptive is useful, and the large corpora
that these models are trained on is not guaranteed to be
high quality.

Being more specific when interacting with large trans-
former models already greatly increases accuracy. As re-
cently as October 2022, research done by the University
of Tokyo in conjunction with the Google Brain team
found that simply adding the phrase, “Let’s think step
by step”, into their natural language prompts increased
accuracy up to 300 percent [12].

This Context Look-Up component could be a hash-
map with key-value pairs being the token and its closest

dictionary definition. The model could then see a nested
sentence where that specific token is replaced or sup-
plemented with its definition. This would fix the earlier
example (Fig. 6) using a banana and bookmark. If the
model had access to the explicit information about the
“banana” token, it would have been more equipped to
provide a realistic answer.

If the key-value map is still insufficient, then a more
sophisticated component could allow read-access to a
database with greater information and examples. The
database would act as the memory framework and the
user could set an attention score threshold for when
the model calls a query to the database. This has the
added benefit of not increasing training complexity but
a sufficient database would need to be built.

It is the opinion of this paper that this Context Look-
Up component would prove the most useful. This creates
a type of metamemory for the model,

Metamemory is defined as how well our sub-
jective sense of our memory ability matches an
objective measure of it [9].

It would not only have training weights as memory
parameters, but higher quality nested input strings as
well.

V. CONCLUSION AND LOOKING FORWARD

Neuroscience has a lot to offer machine learning
engineers in the future. The human brain is the greatest
reference point we have for continuing the development
of deep neural networks. There are plenty of other
issues that need to be discussed such as prompt-injection
attacks and multi-month training times. There is some
consensus among NLP experts that the current models
we have are already over-scaled,

DeepMind found that all super-large models
are “significantly undertrained.” They’re un-
necessarily big [13].

There are few meaningful circumstances where quantity
is better than quality. As important as AI will inevitably
be to human civilization, we should not get lost in
powerful hardware and forget the refinement of the
models running on it. The powerful hardware used for
these training sessions are hitting their own constraints as
well. Training GPT-3 in 2020 cost between four (4) and
twelve (12) million dollars and took weeks depending
on the configuration [14]. Other larger models can take
a magnitude longer. Working and refining what we have
could be the next step in transformer model development.
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